Synthetic transformations of a pendant nitrile moiety in group 4 metallocene complexes.

نویسندگان

  • Jiří Pinkas
  • Ivana Císařová
  • Jiří Kubišta
  • Michal Horáček
  • Martin Lamač
چکیده

Functional group transformations at the group 4 metallocene framework have been demonstrated, which have provided relatively straightforward access to otherwise synthetically challenging derivatives. The pendant nitrile group in Ti and Zr metallocene complexes of the type [(η(5)-C5Me5)(η(5)-C5H4CMe2CH2CN)MCl2] was converted into an intramolecularly bound ketimido moiety by alkylation, which took place not only at the nitrile, but also at the metal centre. The choice of an alkylating reagent (alkyl/aryl lithium, Grignard reagent) was crucial: e.g., 2 equiv. of MeMgBr effected the alkylation only at the metal, yielding selectively complexes [(η(5)-C5Me5)(η(5)-C5H4CMe2CH2CN)MMe2], while the use of PhMgBr, PhLi, or MeLi instead gave selectively the ketimido complexes. Organyl lithium reagents were, however, not compatible with the titanocene derivatives. The metal-bound ketimides were subsequently cleaved off by the reaction with HCl, which afforded metallocene dichlorides with a pendant imino group. These compounds were easily protonated again at the nitrogen atom to produce a cationic iminium moiety. Aqueous hydrolysis of the imine or its respective hydrochloride proved to be viable in the case of Zr and it finally afforded a pendant ketone group attached to the zirconocene framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group (IV) Metallocene Complexes with Bulky ω-aryloxyalkyl-Substituted Indenyl Ligands as Catalyst Precursors for Homogeneous Ethylene Polymerization

 A series of seven new complexes of zirconium and hafnium with bulky ω-aryloxyalkyl substituted indenyl ligands were synthesized and characterized by NMR spectroscopy and elemental analysis. These complexes were activated with methylaluminoxane and tested for homogeneous ethylene polymerization. The zirconium catalysts showed higher activities than their hafnium an...

متن کامل

Metal-ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand.

The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal-ligand cooperative manner. This leads to the formation of a series of complexes with new Ru-N(nitrile) and C(ligand)-C(nitrile) bonds. The initial nitrile cycloaddition products, the ketimido complexes 3, have a Brønsted basic (nitrile-derived) Ru-N fragment. This is...

متن کامل

Gold(I) N-heterocyclic carbene complexes with an “activable” ester moiety: possible biological applications

While N-heterocyclic carbenes (NHC) are ubiquitous ligands in catalysts for organic or industrial synthesis, their potential to form transition metal complexes for medicinal applications has still to be exploited. Within this frame, new Au(I)-NHC compounds have been synthesized and structurally characterized via different methods. The solid state structure of one of these compounds was also est...

متن کامل

Bryce Sunsdahl

Metallocene and ansa-metallocene complexes of group 3 metals and the Lanthanides have shown to be effective catalysts for a number of chemical reactions. These include alkene polymerization, hydrosilation, hydroboration, hydrogenation and hydroamination. The coordinatively unsaturated, monomeric permethylyttrocene complexes in particular have proven to be highly effective for carrying out these...

متن کامل

Catalytic dehydrogenation of dimethylamine borane by group 4 metallocene alkyne complexes and homoleptic amido compounds.

Dehydrogenation of Me(2)NH·BH(3) (1) by group 4 metallocene alkyne complexes of the type Cp(2)M(L)(η(2)-Me(3)SiC(2)SiMe(3)) [Cp = η(5)-cyclopentadienyl; M = Ti, no L (2Ti); M = Zr, L = pyridine (2Zr)] and group 4 metal amido complexes of the type M(NMe(2))(4) [M = Ti (8Ti), Zr (8Zr)] is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 42 19  شماره 

صفحات  -

تاریخ انتشار 2013